<menuitem id="r3jhr"></menuitem><noscript id="r3jhr"><progress id="r3jhr"><code id="r3jhr"></code></progress></noscript>

      高一數(shù)學(xué)公式和知識點筆記

      時間:2024-05-03 08:12:54 筆記 我要投稿
      • 相關(guān)推薦

      高一數(shù)學(xué)公式和知識點筆記

        在我們的學(xué)習(xí)時代,是不是經(jīng)常追著老師要知識點?知識點是知識中的最小單位,最具體的內(nèi)容,有時候也叫“考點”。掌握知識點有助于大家更好的學(xué)習(xí)。下面是小編為大家整理的高一數(shù)學(xué)公式和知識點筆記,供大家參考借鑒,希望可以幫助到有需要的朋友。

      高一數(shù)學(xué)公式和知識點筆記

      高一數(shù)學(xué)公式和知識點筆記1

        形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

        自變量x的取值范圍是不等于0的.一切實數(shù)。

        反比例函數(shù)圖像性質(zhì):

        反比例函數(shù)的圖像為雙曲線。

        由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點對稱。

        另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標(biāo)軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

        上面給出了k分別為正和負(fù)(2和-2)時的函數(shù)圖像。

        當(dāng)K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)

        當(dāng)K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)

        反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。

        知識點:

        1.過反比例函數(shù)圖象上任意一點作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為|k|。

        2.對于雙曲線y=k/x,若在分母上加減任意一個實數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)

      高一數(shù)學(xué)公式和知識點筆記2

        I.定義與定義表達(dá)式

        一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

        (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

        則稱y為x的二次函數(shù)。

        二次函數(shù)表達(dá)式的右邊通常為二次三項式。

        II.二次函數(shù)的三種表達(dá)式

        一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

        頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]

        交點式:y=a(x-x?)(x-x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線]

        注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

        h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

        III.二次函數(shù)的圖像

        在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的`圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

        IV.拋物線的性質(zhì)

        1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。對稱軸與拋物線唯一的交點為拋物線的頂點P。

        特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0)

        2.拋物線有一個頂點P,坐標(biāo)為

        P(-b/2a,(4ac-b^2)/4a)

        當(dāng)-b/2a=0時,P在y軸上;當(dāng)Δ=b^2-4ac=0時,P在x軸上。

        3.二次項系數(shù)a決定拋物線的開口方向和大小。

        當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口。

        |a|越大,則拋物線的開口越小。

      高一數(shù)學(xué)公式和知識點筆記3

        一、定義與定義式:

        自變量x和因變量y有如下關(guān)系:

        y=kx+b

        則此時稱y是x的一次函數(shù)。

        特別地,當(dāng)b=0時,y是x的正比例函數(shù)。

        即:y=kx(k為常數(shù),k≠0)

        二、一次函數(shù)的性質(zhì):

        1.y的'變化值與對應(yīng)的x的變化值成正比例,比值為k即:y=kx+b(k為任意不為零的實數(shù)b取任何實數(shù))

        2.當(dāng)x=0時,b為函數(shù)在y軸上的截距。

        三、一次函數(shù)的圖像及性質(zhì):

        1.作法與圖形:通過如下3個步驟

        (1)列表;

        (2)描點;

        (3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點)

        2.性質(zhì):(1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。

        3.k,b與函數(shù)圖像所在象限:

        當(dāng)k>0時,直線必通過一、三象限,y隨x的增大而增大;

        當(dāng)k<0時,直線必通過二、四象限,y隨x的增大而減小。

        當(dāng)b>0時,直線必通過一、二象限;

        當(dāng)b=0時,直線通過原點

        當(dāng)b<0時,直線必通過三、四象限。

        特別地,當(dāng)b=O時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。

        這時,當(dāng)k>0時,直線只通過一、三象限;當(dāng)k<0時,直線只通過二、四象限。

      高一數(shù)學(xué)公式和知識點筆記4

        對數(shù)函數(shù)的一般形式為,它實際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對于a的規(guī)定,同樣適用于對數(shù)函數(shù)。

        對于不同大小a所表示的函數(shù)圖形:

        可以看到對數(shù)函數(shù)的圖形只不過的'指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對稱圖形,因為它們互為反函數(shù)。

        (1)對數(shù)函數(shù)的定義域為大于0的實數(shù)集合。

        (2)對數(shù)函數(shù)的值域為全部實數(shù)集合。

        (3)函數(shù)總是通過(1,0)這點。

        (4)a大于1時,為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時,函數(shù)為單調(diào)遞減函數(shù),并且下凹。

        (5)顯然對數(shù)函數(shù)無界。

      高一數(shù)學(xué)公式和知識點筆記5

        第一章:集合與函數(shù)概念

        一、集合有關(guān)概念

        1.集合的含義

        2.集合的中元素的三個特性:

        (1)元素的確定性如:世界上的山

        (2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

        (3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

        3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

        (1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

        (2)集合的表示方法:列舉法與描述法。

        注意:常用數(shù)集及其記法:

        非負(fù)整數(shù)集(即自然數(shù)集)記作:N

        正整數(shù)集:N*或N+

        整數(shù)集:Z

        有理數(shù)集:Q

        實數(shù)集:R

        1)列舉法:{a,b,c……}

        2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合{xR|x-3>2},{x|x-3>2}

        3)語言描述法:例:{不是直角三角形的三角形}

        4)Venn圖:

        4、集合的分類:

        (1)有限集含有有限個元素的集合

        (2)無限集含有無限個元素的集合

        (3)空集不含任何元素的集合例:{x|x2=-5}

        二、集合間的基本關(guān)系

        1.“包含”關(guān)系—子集

        注意:有兩種可能

        (1)A是B的一部分,;

        (2)A與B是同一集合。

        反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

        2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)  實

        例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”

        即:

       �、偃魏我粋€集合是它本身的子集。AíA

       �、谡孀蛹�:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

       �、廴绻鸄íB,BíC,那么AíC

       �、苋绻鸄íB同時BíA那么A=B

        3.不含任何元素的集合叫做空集,記為Φ

        規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

        4.子集個數(shù):

        有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集

        三、集合的運算

        運算類型交集并集補(bǔ)集

        定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.

        由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).

        第二章:基本初等函數(shù)

        一、指數(shù)函數(shù)

        (一)指數(shù)與指數(shù)冪的運算

        1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.

        當(dāng)是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負(fù)數(shù)的次方根是一個負(fù)數(shù).此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).

        當(dāng)是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù).此時,正數(shù)的正的次方根用符號表示,負(fù)的次方根用符號-表示.正的次方根與負(fù)的次方根可以合并成±(>0).由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。

        注意:當(dāng)是奇數(shù)時,當(dāng)是偶數(shù)時,2.分?jǐn)?shù)指數(shù)冪

        正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:

        0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義

        指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的.運算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.

        3.實數(shù)指數(shù)冪的運算性質(zhì)

        (二)指數(shù)函數(shù)及其性質(zhì)

        1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域為R.

        注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.

        2、指數(shù)函數(shù)的圖象和性質(zhì)

        第三章:第三章函數(shù)的應(yīng)用

        1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。

        2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標(biāo)。即:

        方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點.

        3、函數(shù)零點的求法:

        求函數(shù)的零點:

        (1)(代數(shù)法)求方程的實數(shù)根;

        (2)(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.

        4、二次函數(shù)的零點:

        二次函數(shù).

        1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.

        2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.

        3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零

      《&.doc》
      将本文的Word文档下载到电脑,方便收藏和打印
      推荐度:
      点击下载文档

      【高一數(shù)學(xué)公式和知識點筆記】相關(guān)文章:

      高考數(shù)學(xué)公式及知識點整理10-10

      高一英語必修一知識點匯總筆記05-09

      化學(xué)高一必修一知識點歸納筆記02-27

      高一化學(xué)必修一知識點筆記01-24

      高一數(shù)學(xué)公式記憶方法12-18

      高一數(shù)學(xué)必修二知識點筆記梳理04-19

      高一必修一物理知識點歸納筆記04-25

      高一數(shù)學(xué)必修一知識點歸納筆記04-26

      高一政治信用工具和外匯知識點12-19

      在线咨询
      久久亚洲中文字幕精品一区四_久久亚洲精品无码av大香_天天爽夜夜爽性能视频_国产精品福利自产拍在线观看
      <menuitem id="r3jhr"></menuitem><noscript id="r3jhr"><progress id="r3jhr"><code id="r3jhr"></code></progress></noscript>
        日韩国产欧美另类综合 | 日韩女同在线二区三区 | 中出仑乱中文字幕视频网 | 欧洲国产伦久久久久久久 | 亚洲综合色自拍一区 | 久久96固产视频 |

        高一數(shù)學(xué)公式和知識點筆記

          在我們的學(xué)習(xí)時代,是不是經(jīng)常追著老師要知識點?知識點是知識中的最小單位,最具體的內(nèi)容,有時候也叫“考點”。掌握知識點有助于大家更好的學(xué)習(xí)。下面是小編為大家整理的高一數(shù)學(xué)公式和知識點筆記,供大家參考借鑒,希望可以幫助到有需要的朋友。

        高一數(shù)學(xué)公式和知識點筆記

        高一數(shù)學(xué)公式和知識點筆記1

          形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

          自變量x的取值范圍是不等于0的.一切實數(shù)。

          反比例函數(shù)圖像性質(zhì):

          反比例函數(shù)的圖像為雙曲線。

          由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點對稱。

          另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標(biāo)軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

          上面給出了k分別為正和負(fù)(2和-2)時的函數(shù)圖像。

          當(dāng)K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)

          當(dāng)K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)

          反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。

          知識點:

          1.過反比例函數(shù)圖象上任意一點作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為|k|。

          2.對于雙曲線y=k/x,若在分母上加減任意一個實數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)

        高一數(shù)學(xué)公式和知識點筆記2

          I.定義與定義表達(dá)式

          一般地,自變量x和因變量y之間存在如下關(guān)系:y=ax^2+bx+c

          (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)

          則稱y為x的二次函數(shù)。

          二次函數(shù)表達(dá)式的右邊通常為二次三項式。

          II.二次函數(shù)的三種表達(dá)式

          一般式:y=ax^2+bx+c(a,b,c為常數(shù),a≠0)

          頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]

          交點式:y=a(x-x?)(x-x?)[僅限于與x軸有交點A(x?,0)和B(x?,0)的拋物線]

          注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

          h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

          III.二次函數(shù)的圖像

          在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的`圖像,可以看出,二次函數(shù)的圖像是一條拋物線。

          IV.拋物線的性質(zhì)

          1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。對稱軸與拋物線唯一的交點為拋物線的頂點P。

          特別地,當(dāng)b=0時,拋物線的對稱軸是y軸(即直線x=0)

          2.拋物線有一個頂點P,坐標(biāo)為

          P(-b/2a,(4ac-b^2)/4a)

          當(dāng)-b/2a=0時,P在y軸上;當(dāng)Δ=b^2-4ac=0時,P在x軸上。

          3.二次項系數(shù)a決定拋物線的開口方向和大小。

          當(dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口。

          |a|越大,則拋物線的開口越小。

        高一數(shù)學(xué)公式和知識點筆記3

          一、定義與定義式:

          自變量x和因變量y有如下關(guān)系:

          y=kx+b

          則此時稱y是x的一次函數(shù)。

          特別地,當(dāng)b=0時,y是x的正比例函數(shù)。

          即:y=kx(k為常數(shù),k≠0)

          二、一次函數(shù)的性質(zhì):

          1.y的'變化值與對應(yīng)的x的變化值成正比例,比值為k即:y=kx+b(k為任意不為零的實數(shù)b取任何實數(shù))

          2.當(dāng)x=0時,b為函數(shù)在y軸上的截距。

          三、一次函數(shù)的圖像及性質(zhì):

          1.作法與圖形:通過如下3個步驟

          (1)列表;

          (2)描點;

          (3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點,并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點)

          2.性質(zhì):(1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。

          3.k,b與函數(shù)圖像所在象限:

          當(dāng)k>0時,直線必通過一、三象限,y隨x的增大而增大;

          當(dāng)k<0時,直線必通過二、四象限,y隨x的增大而減小。

          當(dāng)b>0時,直線必通過一、二象限;

          當(dāng)b=0時,直線通過原點

          當(dāng)b<0時,直線必通過三、四象限。

          特別地,當(dāng)b=O時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。

          這時,當(dāng)k>0時,直線只通過一、三象限;當(dāng)k<0時,直線只通過二、四象限。

        高一數(shù)學(xué)公式和知識點筆記4

          對數(shù)函數(shù)的一般形式為,它實際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對于a的規(guī)定,同樣適用于對數(shù)函數(shù)。

          對于不同大小a所表示的函數(shù)圖形:

          可以看到對數(shù)函數(shù)的圖形只不過的'指數(shù)函數(shù)的圖形的關(guān)于直線y=x的對稱圖形,因為它們互為反函數(shù)。

          (1)對數(shù)函數(shù)的定義域為大于0的實數(shù)集合。

          (2)對數(shù)函數(shù)的值域為全部實數(shù)集合。

          (3)函數(shù)總是通過(1,0)這點。

          (4)a大于1時,為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時,函數(shù)為單調(diào)遞減函數(shù),并且下凹。

          (5)顯然對數(shù)函數(shù)無界。

        高一數(shù)學(xué)公式和知識點筆記5

          第一章:集合與函數(shù)概念

          一、集合有關(guān)概念

          1.集合的含義

          2.集合的中元素的三個特性:

          (1)元素的確定性如:世界上的山

          (2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

          (3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

          3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

          (1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

          (2)集合的表示方法:列舉法與描述法。

          注意:常用數(shù)集及其記法:

          非負(fù)整數(shù)集(即自然數(shù)集)記作:N

          正整數(shù)集:N*或N+

          整數(shù)集:Z

          有理數(shù)集:Q

          實數(shù)集:R

          1)列舉法:{a,b,c……}

          2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合{xR|x-3>2},{x|x-3>2}

          3)語言描述法:例:{不是直角三角形的三角形}

          4)Venn圖:

          4、集合的分類:

          (1)有限集含有有限個元素的集合

          (2)無限集含有無限個元素的集合

          (3)空集不含任何元素的集合例:{x|x2=-5}

          二、集合間的基本關(guān)系

          1.“包含”關(guān)系—子集

          注意:有兩種可能

          (1)A是B的一部分,;

          (2)A與B是同一集合。

          反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

          2.“相等”關(guān)系:A=B(5≥5,且5≤5,則5=5)  實

          例:設(shè)A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”

          即:

         �、偃魏我粋€集合是它本身的子集。AíA

         �、谡孀蛹�:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

         �、廴绻鸄íB,BíC,那么AíC

         �、苋绻鸄íB同時BíA那么A=B

          3.不含任何元素的集合叫做空集,記為Φ

          規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

          4.子集個數(shù):

          有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集

          三、集合的運算

          運算類型交集并集補(bǔ)集

          定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.

          由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).

          第二章:基本初等函數(shù)

          一、指數(shù)函數(shù)

          (一)指數(shù)與指數(shù)冪的運算

          1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.

          當(dāng)是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負(fù)數(shù)的次方根是一個負(fù)數(shù).此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).

          當(dāng)是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù).此時,正數(shù)的正的次方根用符號表示,負(fù)的次方根用符號-表示.正的次方根與負(fù)的次方根可以合并成±(>0).由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。

          注意:當(dāng)是奇數(shù)時,當(dāng)是偶數(shù)時,2.分?jǐn)?shù)指數(shù)冪

          正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:

          0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義

          指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的.運算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.

          3.實數(shù)指數(shù)冪的運算性質(zhì)

          (二)指數(shù)函數(shù)及其性質(zhì)

          1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域為R.

          注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.

          2、指數(shù)函數(shù)的圖象和性質(zhì)

          第三章:第三章函數(shù)的應(yīng)用

          1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。

          2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標(biāo)。即:

          方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點.

          3、函數(shù)零點的求法:

          求函數(shù)的零點:

          (1)(代數(shù)法)求方程的實數(shù)根;

          (2)(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.

          4、二次函數(shù)的零點:

          二次函數(shù).

          1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.

          2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.

          3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零